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ABSTRACT 
 

 This report is expository in nature and is intended to explain the basic concept of 
a sensitivity experiment as well as the analysis of its data. These experiments are 
widely applicable to engineering problems that involve binary (pass/fail of go/no-go) 
outcomes. We begin by introducing the simple idea behind a sensitivity experiment; 
then we describe the basic “Up and Down” testing method. Particular emphasis is 
placed upon the parameter this procedure is intended to identify. Next, we describe 
Garwood’s method, a type of Probit analysis, for analyzing sensitivity test data. A 
specialized version of this scheme is derived for stable digital computation. Confidence 
interval estimation is discussed along with an analysis of variance. A set of example 
problems are solved; our results are compared with archival solutions.  
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PURPOSE 
 
 

 The purpose of this report is to document in-house research concerned with the 
analysis of sensitivity test data. The technical information developed in the course of 
this effort is of significant importance in enabling oversight for go/no-go testing efforts 
conducted within the Department of Defense. 
 
 

OBJECTIVES 
 

  
 We begin with a basic discussion of sensitivity experiments based upon a 
common example accessible to the layman. In this example, we emphasize the statistic 
(the number or numbers that we hope to extract from the data and their meaning(s)) of 
primary interest to the analyst, and we also describe how a simple series of tests is 
conducted to obtain the data. The second section of the report derives the analytical 
method used to process the test data and extract the pertinent statistics of interest. 
Later, we derive equations for the calculation of confidence intervals and analyzing the 
variance of parameters. Finally, we present results for a set of example problems.  
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1 INTRODUCTION 
 

 Statistics is a complicated science. Having terrorized dormitories and classrooms 

across the country, its late night, torturous study sessions among servile students have 

earned it a dubious “GPA-busting” reputation and the forlorn appellation Sadistics. 

Although it is a division of mathematics, it stands aside from the mainstream of this 

discipline. In fact, its more skillful practitioners refer to themselves as probabilists 

instead of mathematicians. Statistics can also incite chagrin among practicing engineers 

and scientists. In a recent meeting with the author, this assertion was reaffirmed as one 

professional uttered the phrase, “I hate statistics!” 

 Why does statistics evoke such negative emotion? There is a reasonable answer 

for this question. Although many professionals are required to use it, they lack the 

theoretical background and experience required in order to understand how statistics 

works. It is a branch of mathematics that differs from subjects like calculus or linear 

algebra. In these subjects, an individual can learn a few basic ideas and apply them in a 

nearly “cookbook” way to solve problems. Statistics is not so cooperative. Statistical or 

stochastic theory is deeply buried in advanced mathematical theory involving topics 

such as Lesbegue Integration, Measure Theory and Functional Analysis. If these topics 

are well understood, then probabilistic theory is more accessible, and statistics 

becomes understandable. Unfortunately, few people have the time and patience 

required to study and master these disciplines. Hence, statistical theory remains arcane, 

and its mastery eludes all but its diehard practitioners. 

 The difficulty associated with mastering statistical inference presents a true 

dilemma. Statistics is an extremely applied science. It has an extensive number of 
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applications in practically every field of engineering or scientific endeavor. But in order 

to obtain good computational results, great care is required while converting abstract 

statistical theories into practice. After having completed graduate study in stochastic 

processes, the author now agrees, at least in part, with his venerable instructor and 

thesis supervisor. Statistics is best taught and understood through the use of clearly 

explained examples along with carefully planned excursions into probability theory. We 

have attempted to take this approach in the discussions that follow. He who dares to 

venture directly into the world of stochastic theory is doomed to become lost, perhaps 

forever.  

 This report focuses on analytical methods used to process binary and binomial 

statistical trials. A single binary trial or experiment has only two possible outcomes, 

either a success or a failure. A binomial trial may be thought of as a series of binary 

trials taken at the same “level”. The result of a binomial trial consisting of n binary 

experiments is say, p successes and (n – p) failures with a crude probability of success 

of p/n for a particular binomial trial. A binary trial is a special case; it is a binomial trial 

with n = 1 and p can be either 0 or 1. As it happens, Sensitivity Tests are characterized 

by a mixture or series of binary and binomial trials. For military applications, these tests 

have a great deal of utility since many items of military hardware may be used only once 

and may only be evaluated by pass/fail criteria. Many munitions can be thought of in this 

way. For this reason, we describe the basic features of a sensitivity test in the next 

section of this report. 
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1.1 Sensitivity Tests 
 
 A general sensitivity test consists of a finite series of either binary or binomial 

experiments (or a mixture of the two). Each experiment is performed at a level defined 

by distinct value of an explanatory variable.1 The value of the explanatory variable 

directly corresponds to the measurable dosage for this level. The dosage is the related 

to the stimulus, an unmeasurable quantity that drives the outcome of the experiment (or 

trial) at the chosen level.2 The stimulus may be thought of as a mechanistic (physical, 

biological, etc.) process that results from the dosage. Each binary trial has only two 

possible outcomes, a success or a failure. If a binomial trial (consisting of n binary trials) 

is conducted at a given level, then without any loss of generality, we can say that p 

successes and (n – p) failures will result at this level. A basic assumption behind the 

sensitivity test is that as the dosage (stimulus) increases, then the probability of success 

also increases. That is to say, at “lower” levels of stimulus, we expect more failed trials. 

As the stimulus increases at higher levels, we expect more successful trials, up to the 

point where practical all individual binary trials are successes (or for binomial trials, p 

equals n).3 Unfortunately, due to the pass/fail nature of each trial’s outcome, we cannot 

precisely determine the dosage that will result in a success. Instead, all that we can do 

is select a dosage and via test determine whether the critical dosage is higher or lower 

than the test dosage.4 That is to say, if the test is a success, the critical dosage is less 

than or equal to the test dosage. Conversely, if the test is a failure, then the critical 

dosage is greater than the test dosage. To promote greater understanding, let us 

consider a basic example of sensitivity testing. 
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 Suppose that a pharmaceutical manufacturer has developed a new antibiotic to 

fight a particular strain of bacterial pneumonia. As a normal part of the certification 

procedure, an effective dosage must be estimated for this drug. The critical dosage is 

defined as the mass (say, in milligrams) of the drug that must be administered to 

eradicate all invading bacteria with no excess antibiotic remaining in the body. As you 

may imagine, this dosage is impossible to measure. Also, the outcome of the test is 

determined by the stimulus. The stimulus for the problem requires a detailed knowledge 

at the microscopic scale of how the antibiotic interacts with each individual bacterium. 

This information is not known and cannot be determined, so we must obtain an estimate 

of the effective dosage by sensitivity testing. 

 To estimate the effective antibiotic dosage, we select a set of dosage levels for 

testing, for example {0, 10, 20, 30, 40, 50} milligrams. Naturally, this set defines six 

dosage levels for the sensitivity test. We then select a number of healthy test animals 

(say, Rhesus monkeys) for use and decide how many are to be tested. In as much as is 

possible, the test animals (or test articles) should be chosen so that they have the same 

anatomical and physiological (or physical) characteristics.5 If so desired, we can 

formulate the entire sensitivity test series as a sequence of binary trials, one test animal 

per trial. To conduct a trial in this sequence, we choose a level and infect a test animal 

with the pneumonia bacteria. Then we wait a pre-specified amount of time and 

administer the dosage for the chosen level to the test animal. In the period of time after 

administering the drug, we determine the response; the test animal either lives (a 

success) or dies (a failure). The response data is collected, and we then move onto the 
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next level and continue testing. At the conclusion of the entire sequence, we have 

determined a number of successes and failures at each dosage level. 

 This example brings an important fact to light. As we move between trials, we 

cannot reuse test articles, (e.g., test animals). Why? Obviously, if a test animal dies at 

the preceding trial, it cannot be reinfected and tested. If the animal survives the 

preceding trial, its physiology has been altered by the presence of the antibiotic and by 

the action of its immune system. The animal’s bloodstream, lymphatic system and 

pleural tissues are inundated with antibodies to the pneumonia. As a result, it cannot be 

equivalently reinfected, so the results of a subsequent test would be tainted. Once a test 

article has been exposed to the stimulus, it should not be tested again. 

 The output of a complete sensitivity test series may be represented as a plot of 

percentage success (p/n) versus the dosage (or explanatory variable) level. We observe 

that the change in the success percentage is smaller for low and high dosages while the 

greatest change occurs near the mean dosage. Hence, we assume that the dosage-

response curve follows the cumulative normal distribution function.5 When a sufficient 

amount of data has been collected, this assumption is testable.5 With an appropriate 

number of tests, we can determine the “50% point” for the distribution, the level of 

dosage that causes a successful response for 50% of all like test articles.2 This value of 

dosage is the mean for the distribution. We are also interested in how success 

percentages behave for dosages further away from the mean. The property is termed 

dispersion and is measured by the standard deviation. The primary focus of post-test 

analysis resides in determining these properties for the distribution. 
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1.2 The Bruceton Testing Method 

 The mean   and standard deviation   must be estimated accurately if our 

analysis is to have real meaning. For this reason, the sensitivity test procedure is 

designed to concentrate measurements around the mean in order to refine the estimate. 

The Bruceton or “Up and Down” test is commonly used for this purpose.4 The first step 

in conducting a Bruceton test is to decide the range of dosages (minimum to maximum) 

as well as the dosage levels. We must also decide the total number of individual binary 

trials to be performed during the test series. In practice, we require a minimum of 20 

trials, but twice that number is recommended since under theoretical limitations, the 

effective sample size is usually half of the actual sample size.4 Table 1 illustrates a 

notional Bruceton test series. The results of the initial trial are recorded in column 2 

while the response for the last trial is recorded in column 21. For the initial trial, we 

choose a dosage (level 2 in the example) that is believed to be closest to the actual 

mean. If the outcome of this trial is a success, we conduct the next trial at the dosage 

just below the initial level. On the other hand, if the first trial is a failure, we conduct the 

second test at the dosage level just above the initial level. The dosage level for the third 

trial is determined in the same manner but is based upon the outcome of the second 

trial. Dosage levels for the remaining trials are determined in the same way, but in most 

cases, we do not use all of the data collected. The reason for excluding some of the 

data is based upon our desire to resolve the normal mean. 

 As we stated above, Bruceton testing concentrates measurements in the vicinity 

of the mean dosage. Since the change in dosage level between trials “opposes” the  
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Table 1. Illustration of responses for a Bruceton test series consisting of 20 binary trials. The notation "x" 
denotes a success while "o" denotes a "failure". Six dosage levels are numbered 1 to 6 from low to high. 

C 1 
C 
2 

C 
3 

C 
4 

C 
5 

C 
6 

C 
7 

C 
8 

C 
9 

C 
10 

C 
11 

C 
12 

C 
13 

C 
14 

C 
15 

C 
16 

C 
17 

C 
18 

C 
19 

C 
20 

C 
21 

Lev 
1      o               

Lev 
2 o    x  o      o        

Lev 
3  o  x    o  o  x  o       

Lev 
4   x      x  x    o  o    

Lev 
5                x  o  o 

Lev 
6                   x  

 

Table 2. Summary of the Bruceton test results extracted from Table 1 shown for each dosage level. 

Dosage Level 1 2 3 4 5 6 

Successes (x) 0 1 2 3 1 1 

Failures (o) 1 3 4 2 2 0 

Total No.Trials 1 4 6 5 3 1 

 

sense of the preceding response, the up and down nature of the test series attempts to 

center data collection around the mean. Unfortunately, if our initial guess for the mean 

dosage level is poor, we automatically introduce extraneous data into the test series. 

Suppose that we have guessed an initial value for the dosage that is too low. Then for 

two or more tests, we will steadily increase the dosage level and obtain failed 

responses. For example, see levels 2 and 3 in Table 1. Let us assume that we obtain a 

success on the third trial (shown in column 4). This sudden change in the response 

(indicated by the red block in Table 1) is termed as a reversal. It follows that we avoid  

introducing extraneous “start-up” data by analyzing only information obtained beginning 

with the second trial. In this way, data collection tends to remain near the mean. The 

results of this example test series are shown versus dosage level in Table 2. 
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1.3 Difficulties with Data Reduction 

  Sensitivity testing does have its caveats. In the first place, the test data must 

contain a zone of mixed results.6 That is to say, the highest level at which a trial fails 

must exceed the lowest level observed for a successful trial. If this condition is not 

satisfied, the equations for estimating   become inconsistent, and zero is the only 

value that can be obtained for  .7 In the example shown in Table 1, “2” is the lowest 

level corresponding to a success while “5” is the highest level containing a failure. 

Hence, for this example, we obtain a zone of mixed results between levels “2” and “5”. 

The Bruceton test procedure is usually successful in establishing the mixed zone.6 

 Sensitivity testing also possesses certain intrinsic weaknesses. Since it 

concentrates on resolving the distribution mean, it loses accuracy near the “tails” of the 

distribution, i.e., the regions near 0% and 100% response.4 For reliability problems, we 

are most interested in the region corresponding to response values exceeding 99%. As 

a result, care must be taken when sensitivity tests are conducted with this purpose in 

mind. Due diligence must be paid to the structure of the dosage levels and to the 

number of trials. The chosen data analysis methodology is equally important since the 

choice of distribution can have a significant effect in the high probability region. In 

certain cases, the logistic distribution is chosen over the normal distribution due to its 

more conservative nature in the “tails”. That is to say, the logistic distribution tends to 

report slightly lower cumulative response than does the normal distribution.8 This 

shortcoming emphasizes the importance of correctly calculating confidence intervals for 

system reliability probabilities in the tail regions. Secondly, the maximum likelihood  
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estimation (MLE) procedure used to analyze the test data generally requires a large 

data set. For small data sets, MLE loses “efficiency”; the estimates of   and   become 

biased and acquire excessive variance.7 Moreover, MLE may not even be able to 

analyze certain small data sets. A classic example is that of a test series without a 

mixed zone of results.7 Note that Dixon and Mood have published the disclaimer: 

“Measures of reliability may be very misleading if the sample size is less than forty or 

fifty.”4 To cope with these potential sources of error, careful test planning must be 

combined with sound numerical estimation techniques. 
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2 TECHNICAL APPROACH 

 For experiments designed with a fixed dosage increment, one may obtain the 

mean   and standard deviation   by plotting the percentage of successes at each 

dosage level on probability paper.5 If this data correlates well with the normal 

distribution,   and   may be extracted graphically from the plot. Unfortunately, for 

certain types of sensitivity tests, the dosage cannot be precisely controlled, and the data 

may not exactly conform to the normal distribution. The former difficulty is commonly 

encountered for system reliability test series. To achieve the best estimates of the mean 

and standard deviation for these tests, we usually apply generalized MLE procedures.2 

 

2.1 Maximum Likelihood Equation 

 The Method of Maximum Likelihood is a powerful estimation procedure that was 

developed by R.A. Fisher during the first two decades of the Twentieth Century. To 

adapt this method for analyzing our sensitivity tests, we apply theoretical concepts from 

probability. Individual binary trials performed in the course of the test series are 

effectively independent from the standpoint of probability. The outcome (or response) of 

one trial has no effect on the outcome of any other trial. If we envision that the outcome 

of each trial is represented by its own random variable, then in terms of the dosage (an 

explanatory variable), these random variables are identically distributed. That is to say, 

they have the same distribution function and parameters (   and  ). Since the trials are 

independent, the probability of events occurring in two trials is given by the product of 

their individual probabilities. Suppose that a total of in  binary trials are conducted at the 
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ith dosage level. Let the success probability at this level be given by ip  and the failure 

probability by 

                                                              ii pq 1 .                                                  (2.1.1) 

With these assumptions, the entire test series can be envisioned as a sequence of 

Bernoulli (pass/fail) trials. Further suppose that there are is  successes at this level 

(therefore ii sn   failures). Then the likelihood function can be written as 

                                                       iii

l

sns
N

i i

i
qp

s

n
L





 









1

~
,                                          (2.1.2) 

where lN  is the number of dosage levels; the term in the parentheses is a combination 

of in  trials taken is  at a time.9 The combination is used to represent the independence 

of order for Bernoulli trials defined at the same level. Equation (2.1.2) is the product of 

binomial probability distributions formulated at the dosage levels.10 Using the natural 

logarithm of the likelihood function lends a great deal of convenience, i.e., 
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where )
~

ln(LL  . By maximizing L , the natural log of the likelihood function, we 

effectively maximize L
~

. Equation (2.1.3) is referred to as the log-likelihood function. 

 

2.2 Dosage Dependant Probabilities 

 To estimate the “mean dosage”, the dosage defined at the level where the 

probability equals 0.5, many probabilistic concepts must be brought together. As a  
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result, it is very easy to lose sight of important theoretical details. One may note that we 

have done nothing to connect the MLE expression to the dosage (or explanatory 

variable). Equation (2.1.2) is cast in the form of a binomial probability distribution, but 

one may note that ip  and iq
 

are not yet related to the dosage variable. These 

probabilities are related to the dosage variable though the use of a link function.1 

Several link functions are available, but we apply the normal probability distribution 

function commonly used in the “probit” method.11 The normal distribution is based upon 

a continuous probability density function that must be integrated with respect to the 

explanatory variable ( ix  at the ith level) in order to compute ip  where 

                                    dx
x

xpp
ix
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Note that by this definition, ip  is the probability that ),( ixx  . When (2.2.1) is 

substituted into (2.1.3), we obtain an expression for the log-likelihood function that 

explicitly depends on the dosage level. To promote some simplicity, we define the 

variable 

                                                           





x
xt )( ,                                                (2.2.2) 

and we can rewrite ip  as 

                                                   dt
t
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1 2

exp

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This equation is now in the form of the standard normal distribution.7 Although (2.1.3), 

(2.2.2) and (2.2.3) are correct from the standpoint of theory, (2.2.2) must be placed in a  
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different form to support the estimation procedure. 

 

2.3 Garwood’s Method 

 In the course of this research project, the author has encountered a number of 

different solution procedures for (2.1.3), (2.2.2) and (2.2.3). Each procedure has its 

advantages and disadvantages, and in some cases, the attendant solution algorithm 

tends to be a little unstable. Garwood’s procedure, presented below, seems to offer the 

most stable and robust performance for different data sets.9 We begin this discussion 

with an alternate form for t , i.e., 

                                                      x
ux

t 





 .                                              (2.3.1) 

This expression is just a linear polynomial in x , but it offers an advantage from the 

standpoint of differential calculus. From (2.3.1), it is easy to show that 
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1
 ; .                                               (2.3.2) 

 In the light of (2.1.3) and (2.3.1), critical points, local maxima and minima of L , 

may be cast in ordered pairs ),(  ; they may be determined by solving the system of 

equations: 
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                                               (2.3.3) 

By differentiating (2.1.3), we may show that 
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where ),(   . Observe that 
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and 
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The prime ( ́) symbol denotes differentiation with respect to the principal argument. 

Another operation called differentiation with respect to a parameter may be applied to 

(2.2.3) to obtain 
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,                                      (2.3.7) 

where the notation iz  has been used for brevity. It is very easy to show via (2.3.1) that 
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By substituting in (2.3.4), we obtain 
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Following Garwood9, we note that )( ii tpp   and )( ii tqq  ; therefore, we can rewrite 

(2.3.9) and (2.3.10), respectively as 
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where 
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We also need the second partial derivatives of the log-likelihood function L ; hence, 
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From (2.3.1), we can easily see that 
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Hence, 
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By using (2.3.15), we can also show that 
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and 
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In order to evaluate (2.3.16) through (2.3.18), we must derive an expression for i  . We  

begin with (2.3.13). 
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by applying the quotient rule, 
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By using (2.1.1) and (2.3.7), we can show that 
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Further algebraic simplification yields 
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Hence, 
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It is evident from this sequence of equations that we must evaluate iz . We may do so 

easily by differentiating (2.3.7), i.e., 
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By substituting (2.3.24) and (2.3.25) into equations (2.3.16) through (2.3.18), we obtain 

Garwood’s formulas for 2

2


 L , 


 L2

 and 
2

2


 L . 
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2.4 An Alternative Method 

 Garwood’s method provides a set of exact formulas for the partial derivatives of 

the log-likelihood function with respect to parameters   and  .9 We have successfully 

employed these formulas to solve test problems, particularly those regarding Garwood’s 

examples. Unfortunately, problems arise when this method is applied to sensitivity tests 

that are comprised of a mixture of binomial and binary trials. For endpoint probabilities, 

those near zero and unity, terms such as i  and i   become undefined due the 

presence of the factor ii qp  existing in the denominator. For endpoint probabilities, 

0ii qp ; this situation is routinely encountered for levels in the explanatory variable 

characterized by a single binary trial (or its binomial equivalent). After observing this 

difficulty, we decided to revisit the derivation and search for an alternative form of 

derivatives 


L ,
 
L  , 2

2


 L , 


 L2

 and 2

2


 L . An ideal alternative 

formulation is easier to control near the endpoints. 

 To begin our derivation, we differentiate equation (2.1.3) as follows. 
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If we apply the derivative term by term through the summation, we obtain 
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By taking derivatives of the natural logarithm, we have that 
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and this expression can be simplified by using (2.1.1), (2.3.15) and (2.3.25), i.e., 
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By similar means, we can show that 
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The form of equations (2.4.5) and (2.4.6) is quite interesting; the summand contains two 

terms, and each of these terms contains a ratio of the probability density function to its 

cumulative distribution function both evaluated at it  (or ix  under inverse 

transformation). The behavior of the first (second) term ii pz /~  is questionable as 

0ip . Conversely, the behavior of the second term ( ii qz /~ ) requires investigation as 

1ip  (or 0iq ). If we can assert that ii pz /  tends to zero as 0ip , we can exclude 

this term from (2.4.5) in the limit. Consider the following claim. 

 Claim P-1: Let z  be the normal probability density function, and let p  be the 

cumulative distribution function both defined in independent variable t . The ratio pz /  is 

well defined and tends to zero as 0p . 

 Justification: By examining equation (2.3.7) and (2.2.3), respectively, we see that 

both z  and p  approach zero if and only if t . The ratio pz /  may be written as 

follows. 
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Clearly, the Taylor series expansion for the exponential function, 

                                               
!!

)exp(
32

1
32 xx

xx  ,                                   (P-1.2) 

is a convergent power series for 0x . Hence, it flows that 
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is also a convergent power series for any real valued t . To evaluate p , as is specified 

in (P-1.1) we compute the anti-derivative of (P-1.3) term by term, i.e., 
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nS  is the alternating power series contained with the brackets of (P-1.5). If we apply  

the ratio test to this series, we obtain 

                         
n

n

n

n

t

nnn

nnn

t

S

S
2

12

1 1212

221121

))(()(!

))(())((!)(

)( 







 .               (P-1.6) 

Algebraic simplification yields that 
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and thus, 
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Therefore, by the ratio test, the power series in (P-1.5) is convergent, therefore finite, for 

any real value of t . It is also non-zero for finite t . Since both of the series in (P-1.1) are 

convergent, they both have finite limits, say )(tf  for the numerator and )(tg  for the 

denominator, so for any particular real t  
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given the properties of the cumulative distribution function as t . Since )(tf  and 

)(tg  are the finite limits of series that converge with the same order, we have that 
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 By using a proof similar to that shown in Proposition P-1, the ratio qz /  also 

approaches zero as 1p  ( 0q ). It follows that (2.4.5) and (2.4.6) can be expressed  

 

as 
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and 
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By using these equations for endpoint probabilities,  /L  and  /L , (elements of 

the Jacobian matrix for the log-likelihood function) remain well defined for all possible 

values of ip  and iq . 

 In addition to the Jacobian matrix, we must also use the matrix of second partial 

derivatives or Hessian matrix. The reason for its necessity will be made clear in the next 

section. We would like to construct the second partial derivatives in terms of the ratios 

ii pz /  and ii qz / . To derive 22  /L , we differentiate (2.4.5). 
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With some careful mathematics and the use of (2.2.3), (2.3.7) and (2.3.15), we can 

show that 
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After substituting (2.4.10) and (2.4.11) into (2.4.9), we obtain 
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Note that (2.4.12) is characterized by the presence of the ratios ii pz /  and ii qz /  but no 

other terms containing iz  or ip . Now let us consider the mixed partial derivative 
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By carefully differentiating and using previously derived results, we can show that 
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and 
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By substituting (2.4.14) and (2.4.15) into (2.4.13), we can show that 
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and again the desired ratios have been preserved. Recalling (2.4.6), the remaining 

partial derivative is given by 
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hence, 
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After substituting (2.4.14) and (2.4.15), we have that 
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or after simplifying, 
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To recap, this section has presented an alternative formulation of Garwood’s method 

that is useful for evaluating endpoint probabilities. The elements of the Jacobian matrix 

are given by (2.4.5) and (2.4.6) for intermediate (non-endpoint, i.e., 10  p ) 

probabilities while the endpoint formulas are given by (2.4.7) and (2.4.8). Equations 

(2.4.12), (2.4.16) and (2.4.20) contain the elements for the Hessian matrix. These 

formulas are immediately suitable for calculating intermediate probabilities. To calculate 

endpoint probabilities, the same formulas are easily modified in the manner used to 

derive (2.4.7) and (2.4.8). 

 

2.5 Newton’s Solution Method 

 In Sections 2.3 and 2.4, it was demonstrated that we may fit sensitivity test data 

to the normal distribution through Fisher’s Method of Maximum Likelihood.12 Moreover, 

the procedure requires that we estimate two parameters, the distribution mean and 

standard deviation,   and  , respectively. To do so, we must determine   and   

satisfying (2.3.3). Estimates of   and   are obtained by solving equations (2.3.3) cast 

either in Garwood’s form (Section 2.3) or an alternative form (Section 2.4). The fitting 

procedure takes the form of an iterative scheme; rewrite   and   as follows. 
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                                                00 ; .                                     (2.5.1) 

Substitute (2.5.1) into (2.3.3) and apply Taylor’s series for two variables; observe that 
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where the truncation error has order 

                                        222   ))((a , 

for real numbers  ,   and  . If we assume that   and   satisfy (2.3.3) within  2O , 

we can rewrite (2.5.2) and (2.5.3) in matrix form, i.e., 
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The 2x2 matrix on the left side of (2.5.4) is H , the Hessian matrix, and the Jacobian 

matrix (a vector in this case) resides on the right side. If we envision  00  ,  as being a 

starting “guess”, then    ,  is an increment that when added to  00  ,  tends to 

improve the accuracy of the estimate. We can solve (2.5.4) for increments by inverting 

H  and multiplying from the left. The inverse matrix 1H  is easily obtained for a 2x2 

matrix insofar as   ., 000 H  Let J


 represent the Jacobian vector in (2.5.4); then 

   ,  is given by 

                                                0000

1  ,,, JH
T


 

.                                  (2.5.5) 
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From (2.5.1), it follows that 

                                            0000

1

00  ,,,, JH
TT


   ,                           (2.5.6) 

where  T ,  contains the refined parameter estimates. As with other Newton 

approximation methods, (2.5.6) is easily structured as an iterative scheme. After a 

number of iterations, when (2.5.6) has been converged to the desired level of accuracy, 

the distribution mean and standard deviation can be calculated from (2.3.2). 

 

2.6 Confidence Intervals 

 The confidence interval represents one of the more arcane concepts in statistics. 

In many scientific problems, we are interested in estimating some unknown parameter, 

say the “ideal” dosage for an antibiotic. When the ideal dose is administered, it should 

establish a concentration in tissue that is suitable for the eradication of bacteria. Given 

the amount of variation that is routinely created in the manufacturing process, we would 

like to estimate an effective range for the dosage and attach a probabilistic level of 

assurance to it. This dosage range is known as a confidence interval, and the process 

of its determination is known as an interval estimate. The end points of the interval act 

as random variables while the statistical parameter contained within the interval is 

regarded as fixed, but unknown.12 Now let us illustrate where the situation becomes 

confusing. 

 Consider a physical or biological process that exhibits some randomness or 

“noise”. Suppose that the behavior of the process may be characterized, in part, by an 

unknown, yet constant non-random parameter, say  . (The mean of a statistical 
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distribution is a good example of this type of parameter). Unfortunately in most cases,   

cannot be measured with exactness. Instead, it must be estimated by conducting a 

series of independent experimental trials. We denote  ’s estimate as ̂ . Based upon 

the information provided by the experiments, we can also obtain an interval estimate 

],[ HL   associated with ̂ . At this point the investigator would like to obtain a probability 

p  for the interval and then state,  

“With p100 % certainty, the real value of   is contained within ],[ HL  .” 

In truth, it is not possible to make this claim.10 Why? As it happens, the interval 

endpoints L  and H  are calculated based upon the value ̂ . At the conclusion of the 

experimental measurements, ̂  is known, and L  and H  can be calculated directly. As 

they pertain to a single series of experiments, ̂ , L  and H  are fixed; they have no 

random behavior. Hence, we cannot assign a probability to any of these values, so the 

claim made above cannot be true. It is important that we understand what probability 

really means for this situation. 

 In the mathematics of probability, the interval endpoints are represented by 

random variables. Let these random variables be denoted as L  and R . If we repeat 

the entire experimental series a number of times, we would obtain a series of values for 

these random variables. For example, the first test series may produce an estimate ̂  

and the values LL   and RR   as discussed earlier. The probabilistic aspects of 

the interval only become evident when we think of repeating the test series a large 

number of times, obtaining a series of values for L  and R . In this context, both L  
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and R  exhibit random fluctuations, so it makes sense to assign probabilities to their 

outcomes.12 For the first test series, let us suppose that we calculate an interval ],[ RL   

with a probability of 95%.  This result is interpreted as follows. Imagine that we repeat 

the entire test series an additional 99 times and compute a different ],[ RL  . Then 95 

out of these 100 intervals will contain the real parameter  . We can never calculate the 

probability that   lies inside of a single interval ],[ RL  . Now let us discuss different 

types of confidence intervals. Although our treatment of confidence intervals is not 

rigorous, we hope to convey some of the mathematics behind the construction of 

confidence intervals. In most cases, we will draw upon sampling theory as our core 

resource. 

 

2.6.1 The Success Ratio Confidence Interval 

 For the success ratio (or success probability) confidence interval, we actually 

estimate a success ratio p̂  and calculate a confidence interval ],[ RL pp  around this 

probability. This interval is determined with a confidence level of )%( 1100 , 1 . 

Hence, for )( 1100  times out of 100, we expect that this interval will contain the real 

success ratio p . We can derive the endpoint probabilities for this interval by using 

theory associated with the binomial distribution.13 Begin by invoking the DeMoivre-

Laplace Theorem, i.e., for large values of n  (the number of trials per experimental 

series), the ratio 
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                                             (2.6.1.1) 

tends towards the standard normal distribution ),( 10N . The similarity of (2.6.1.1) to 

),( 10N  can be illustrated by realizing that for the binomial distribution, pn  and 

)( ppn  12 .13 With these substitutions, (2.6.1.1) can be rewritten, i.e., 

                                                           





Y
z .                                                 (2.6.1.2) 

This expression is identical to (2.2.2), the argument of the standard normal distribution. 

 ),( 10N  is a symmetric function about its zero mean, so a typical confidence 

interval ),( // 22  zz  is also symmetric about the mean. The probability associated with 

this interval is obtained by integrating the normal density function over  22 // ,  zz . The 

excluded regions ),( / 2z  and ),( / 2z  form the “tails” of this distribution. The “tails” 

are important when determining the probability or confidence coefficient associated with 

the interval. Let the combined probability (area under the curve) for the “tails” equal  ; 

then the confidence coefficient for the interval  22 // ,  zz  is given by )( 1100 %. As 

an example, consider a 95% confidence coefficient; the attendant value of   is 0.05. It  

follows that the area under each section of the “tail” is 02502 ./  . The interval 

endpoints on the explanatory (z) axis for ),( 10N  can now be identified by solving for 

2/z  in the equation 
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It follows that the confidence level for the success ratio interval is given by13 
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Let us carefully consider the meaning of (2.6.1.4). The true success ratio is given by the 

unknown p  while its estimate is given by the measured value nY /  (later referred to as 

p̂ ). If we can “solve for p ” within the restrictions of (2.6.1.4), we automatically obtain an 

interval estimate for p  with the confidence coefficient  1 . Following Larsen and 

Marx13, we can rewrite the argument of (2.6.1.4) as 
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By squaring and rearranging terms, we obtain 
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Albeit with the use of tedious algebraic manipulations, we can rewrite (2.6.1.6) as 
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Equation (2.6.1.7), when viewed as an equality, represents a parabola.13 The roots of 

this equation serve to delimit regions where the locus of the parabola is greater or less 

than zero. In that sense, the roots of (2.6.1.7) are the endpoints of the confidence 

interval. These endpoints, denoted Lowp  and Highp , for the success probability’s 



DISTRIBUTION A:  Approved for public release; distribution unlimited. 96
th
 ABW/PA Approval and Clearance # 96ABW-2008-0024, 

dated 19 Dec 2008. 
30 
 

 
 

)( 1100 % confidence interval may be determined through the use of the quadratic 

formula, i.e., 
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These root formulas deserve further comment. You may recall that the confidence 

coefficient was based upon ),( 10N  with the symmetric interval ),( // 22  zz . By 

rebuilding the Laplace-DeMoivre relationship (2.6.1.1), we have developed a success 

ratio interval that is symmetric about the quantity 
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where nY /  can be thought of as a measured success ratio or success probability 

(however crude). It is interesting to note that nY /  does not lie at the center of the 

interval. Instead, it has been translated and scaled. When n  is large, nz //

2

2  is small, so 

nYp /~  ; in these cases, the Laplace-DeMoivre theorem strictly applies. 
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2.6.2 The Success Ratio Confidence Interval for an Explanatory Variable 

 For sensitivity testing, the binomial distribution remains a critical mathematical 

construct for determining the statistical distribution of success for a random system 

(physical, biological or otherwise). However, the binomial distribution alone lacks the 

ability to connect the system’s response to an explanatory variable. This deficiency is 

remedied by replacing the success probability p  with a probability calculated from the 

cumulative distribution function. This function is defined in terms of an explanatory 

variable. See Section 2 of this report for the details. By doing so, the probability of 

success can be calculated with respect to changes in the explanatory variable. As a 

result, our confidence intervals now lie on the explanatory variable axis instead of on the 

probability locus ],[ 10 . To illustrate this concept, let us reconsider an example that we 

began discussing in Section 2.6. 

 Our example addresses a problem in drug efficacy formulated in terms of a 

question. At what “ideal” dosage will an antibiotic achieve curative blood concentration 

with a chosen level or reliability? This dosage (or a suitable mathematical 

transformation of it) serves as the explanatory variable. A series of sensitivity tests that 

vary dosage are conducted in order to calibrate a normal distribution function for the 

drug’s success. In common practice, we attempt to estimate the dosage at which a drug 

will successfully cure 99% of the test subjects. We are also interested in computing a 

confidence interval for dosage with a confidence coefficient of 95%. This confidence 

interval is interpreted as follows. If we were to conduct the entire series of sensitivity 

tests 100 times and determine a dosage confidence interval for each, the actual dosage  
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that cures 99% of the test subjects in contained in 95 out of 100 of the intervals. As it 

happens, we can estimate this interval based upon the theory presented in the 

preceding section. 

 If we revisit equations (2.6.1.8) and (2.6.1.9), we notice the presence of the term 

nY / . In truth, this term is the number of successful trials divided by the total number of 

trials for the test series. This fraction is a crude success probability; it is analogous to 

the probability of antibiotic efficacy ( 990.ˆ p ) that we would like to see. If we substitute 

p̂  for nY / , we obtain 
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By again noting that the mean and variance for the binomial distribution are given by 

                                                                 pn ;                                                (2.6.2.3) 

                                                            )( ppn  12 ,                                         (2.6.2.4) 

 

we can substitute (2.6.2.4) into Lowp  and Highp  to obtain 
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These equations cast a probability interval around p̂ , so the only task remaining is to 

map Lowp  and Highp  onto corresponding points on the explanatory variable axis. From 

(2.2.1), we may obtain the dosage interval’s endpoints by solving the following 

equations for Low  and High . 
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where ̂  and ̂  are the maximum likelihood estimates for the mean and standard 

deviation obtained by using the techniques described in Section 2.4. 

 

2.6.3 Confidence Interval for the Mean 

 The techniques documented within this report are designed to determine the 

statistical distribution associated with the results of a series of sensitivity tests. For the 

drug efficacy problem, we have assumed a priori that the data fits a normal distribution 

),( N . The purpose of our analysis is to estimate the values of   and  , the two 

parameters that determine the distribution. It is worthwhile to restate that   and   are 

parameters, not random variables. Hence, they have fixed, but unknown values. 

Imagine that we estimate each of these parameters by random sampling; then the 
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sample mean and sample variance are represented by random variables associated 

with random intervals. It follows that interval estimation is based upon statistics 

associated with sampling the distribution. We must imagine that we are estimating the 

mean of the normal distribution through sampling in order to calculate its confidence 

interval. 

 For n  samples ix  taken from a ),( 2N  distribution, the sample mean and 

variance are respectively defined as 
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The sampling mean is known to have the distribution )/,( nN 2 .12 As a result, the 

random variable 
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has the standard normal distribution ),( 10N . For estimating the mean’s confidence 

interval, we assume that the standard deviation   is known.12 Since this distribution is  

 

symmetric around a zero mean, consider the interval ),( aa  on the axis, i.e., 
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We can obtain a similar relationship for   if we first multiply (2.6.3.3) by -1, i.e., 
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By algebraically manipulating (2.6.3.5), we can show that 
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(2.6.3.6) is a random interval (since X̂  is a random variable) associated with the real 

mean for X . From the equivalence of (2.6.3.4) and (2.6.3.6), we can conclude that 
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The probability on the right side of (2.6.3.7) is given by the area under the standard 

normal curve. Denote this area by 1 . In order to determine the limits for the 

confidence interval, we must derive a relationship between a  and  . 

 Since the area under the standard normal curve is 1 , the area under the 

“tails” of the distribution is equal  . The “tails” are symmetric, so each “tail” is 

associated with the probability 2/ . Along the abscissa of the standard normal 

distribution, the “tails” lie in the intervals ),( a  and ),( a . It follows that the value of 

a  is determined from solving the equation 
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When a  has been computed, it may be combined with a single estimate x  of the 

sample mean to compute the confidence interval 
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with confidence coefficient 1  and a  given by the solution of (2.6.3.8). 

 Equation (2.6.3.9) presents intriguing connotations when examined in the context 

of sensitivity testing. The methods in Sections 2.4 and 2.5 fit go/no-go data to a normal 

distribution while (2.3.3.8) and (2.6.3.9) are designed for sampling a normal distribution. 

The distinction is illusory and subtle, but we must examine it in the interest of full 

disclosure. Let us modify John A. Wheeler’s famous dictum and create a statistically 

testable hypothesis, i.e.,14 

                                Aging male computational physicists have no hair. 

If we were to examine this assertion by using sensitivity testing, we would gather a 

random population of male computational physicists and sort them into age groups (or 

levels, as age is the explanatory variable). Then we would guess a mean age and 

choose a number of trials for a Bruceton test series. On either side of the true mean 

age, the numbers of bald and non-bald physicists are distributed evenly. If a 

computational physicist randomly selected from an age level has hair, the test is a 

failure; if not, the test is a success. At the conclusion of the test series, the mean and 

standard deviation for the normal distribution are estimated (say, in years) by using the 

methods of Sections 2.4 and 2.5. Of course, there is no stimulus involved in this test, so 

it does not strictly constitute a sensitivity test, but it is illustrative of our point. 

 Now consider a similar experiment that involves a more traditional sampling 

procedure. In this case, we gather a population of “bald”, male computational physicists  
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and decide on a number of sampling trials. We conduct the test series by randomly 

selecting one physicist at a time and recording his age (in years). After completing the 

last trial, equations (2.6.3.1) and (2.6.3.2) are used to compute the mean and variance 

for this distribution. The statistical distribution rendered by this procedure differs from 

that resulting from the Bruceton procedure. The sampling procedure simply determines 

the distribution of age among “bald” physicists. These distributions are related, but they 

are not identical. In either case, we can determine the probability that male 

computational physicists are bald within a certain age group. 

 By realizing the difference between the data obtained from these two different 

tests, we can apply the sampling formula for the mean to the sensitivity test series. 

There are two ways to implement this idea. First, we may perform a direct application of 

(2.6.3.9) where x  is the sample mean for the age of the physicists tested. At first 

glance, this mean seems to have no correlation to hairlessness since it is merely the 

mean age extracted for the test subjects. One must remember, however, that we are 

conducting a sensitivity test, so the age levels are designed to reveal the mean based 

upon the hair/no-hair results. As a result, the value of x  will have meaning in this 

context. In the second interpretation of x , we notice that in analyzing the Bruceton test 

data, we have estimated values ̂  for the mean and   for the standard deviation. We 

expect that this estimate should, in some sense, coincide with the sample mean. For 

sensitivity tests, we also formulate our interval estimate based upon binary trials and set 

n  equal one in (2.6.3.9). 
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2.6.4 Confidence Interval for the Variance 

 The concept of a confidence interval can also be extended to estimates of the 

variance. Once again, we imagine repeating an entire series of sensitivity tests over and 

over again. Remember that the variance is a fixed, but unknown, statistical parameter. 

Based upon the data, we can estimate both the variance and its confidence interval. As 

we stated earlier, the endpoints of the interval are random variables since they vary 

from test series to test series. It should also be stated that, as in the case of the mean, 

our discussion of the variance confidence interval is based upon sampling formulas for 

the normal distribution. 

 Consider the normal distribution ),( N ; further suppose that the mean   is 

known with a high degree of confidence. The maximum likelihood estimation formula for 

the variance is 
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where iX  is the thi random sample of n  drawn from the distribution.13 Secondly, define 

the random variable Y  such that 
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Y  is distributed as );( ny2 , the chi-square random variable with n  degrees of 

freedom.12 According to Craig and Hogg, for a 100( )1 % confidence interval, we seek 

interval endpoints a  and b  such that 

                                                  1)(obPr bYa ,                                    (2.6.4.3) 
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or by using (2.6.4.2), 
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An algebraic rearrangement of the inequality yields the equivalent probability 
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This probability relationship deserves comment. Note that, in general, the interval 

endpoints are not symmetric, i.e., ba  . The reason for the difference between a  and b

is that );( ny2  is not a symmetric density function; as a result, the choice of these 

endpoints is not unique. As a matter of general practice, a  and b  are chosen to satisfy 

the following relationships:12 
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where the chi-square density function with n  degrees of freedom is defined by13 
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The presence of the Gamma function in (2.6.4.7) complicates the evaluation of integrals 

in (2.6.4.6), but with the use of proper numerical algorithms, this process is amenable to  

digital computation.15 

 The application of interval estimation to the variance presents interesting 

questions from the standpoint of analyzing sensitivity test data. Similar considerations 

were posed in the preceding section regarding the estimated mean. Equation (2.6.4.5) 

really addresses the sample variance attendant to a normally distributed population. Our 
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sensitivity test results consist solely of go/no-go data, so its connection to classic 

sampling experiment is less direct. See the preceding section for an example. 

Nevertheless, (2.6.4.5) and (2.6.4.6) remain valid, but there are two interpretations of 

the sample variance estimate. In the first interpretation, we directly apply (2.6.4.5); the 

values of the explanatory variable taken from the test series are used as the iX  while   

is taken equal to ̂ , the estimate of the mean generated by the methods discussed in 

Sections 2.4 and 2.5. In the second interpretation, we employ mathematical sleight of 

hand by noting that the sample variance is defined by (2.6.4.1); hence, 
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Garwood’s method provides an estimate of 2 , so we may use this value, denoted 2̂ , 

in lieu of 2S . The confidence interval then is defined by 
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with a   and b  defined as in (2.6.4.6). For sensitivity tests, we apply the analogy for 

binary trials and set n  equal one. 

 

2.7 Measures of Variance 

 In this section, we address measures of variance associated with our fitting 

procedure. As it happens, both the normal mean and variance, as statistical estimates, 

have associated variances Var(µ) and Var(σ), respectively. Also, we can imagine that µ 

and σ vary jointly across the statistical distribution justifying a calculation of their 
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covariance. As it happens, these estimates of variance are given as entries in varA the 

asymptotic variance-covariance matrix, the inverse of the information matrix, infoA  where 
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A common approach to the determination of the information matrix is to represent each 

partial derivative as a sum over binary trials.6 This process requires equations similar to 

those derived in Section 2.4. It is easy to compute the expected values for these 

expressions, but we propose an alternative method that uses information already 

calculated as a part of the solution procedure. 

 Recall that as a part of our solution algorithm, we defined the Hessian matrix H

as 
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The transformation (2.3.2) has the general form of 
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By using the chain rule for partial differentiation, we can derive the information matrix 

infoA  from H . Observe that 
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It is a tedious mathematical exercise, but repeated applications of (2.7.4) and (2.7.5) 

can be used to show that 
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Equations (2.7.6) through (2.7.8) are the elements of infoA . We can calculate them easily 

with the use of the following coordinate transformation derivatives. 
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By inverting infoA  in accordance with (2.7.1), we obtain an estimate of the asymptotic  
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variance-covariance matrix; its elements are 

                                  var

,

2var

,

var

, Var;,Cov;Var 222111 AAA   .                  (2.7.9)  
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3 RESULTS FOR TEST PROBLEMS 

 In the preceding sections, we have conveyed a part of the probabilistic theory 

supporting the analysis of sensitivity test data. The mathematics employed is quite 

complicated and much time is required in order to gain a working level of knowledge in 

this discipline. Mired in theory, it is easy to lose touch with the practical aspects of the 

calculations. For this reason, this part of the report presents the setup and results 

associated with a series of basic test problems. To enhance understanding and permit 

brevity, we have selected problems from Garwood.9 These problems are useful in 

validating the algorithms discussed in this report. Example calculations are provided to 

illustrate most the analyses described in Section 2. Only the variance confidence 

interval computation is not shown because of the time required in order to program the 

Gamma function. 

 

3.1 Example 1 – Antibiotic Efficacy 

 Our first example addresses a series of serum testing trials associated with an 

anti-pneumonia drug. Selected doses of the drug are administered to groups of mice. 

The data is presented as a series of five binomial trials, but the data can also be 

represented in terms of a sequence of binary trials (each treated mouse constitutes a 

binary trial). The data is provided in Table 1, and the drug dosage is measured in cubic 

centimeters.9 Each individual dosage XD is administered to 40 mice, and after being 

infected with pneumonia, the number of expired mice is counted (an expired mouse is 

denoted as a success in this context). For convenience, the real dosage is mapped onto 
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Table 1. Data for Example 1 - Testing an anti-pneumonia drug. 
 

Dosage (XD, mg) x Responses out of 40 

0.000625 -2 33 

0.00125 -1 22 

0.0025 0 8 

0.005 1 5 

0.01 2 2 

 
 
Figure 1. Probability density (2a) and cumulative distribution (2b)  functions for example problem 1. The 
explanatory variable is serum dosage measured in cubic centimeters (cm

3
).  

 

 

Table 2. Selected non-survival probabilities versus serum dosage for example problem 1. 
 

Dosage (cm
3
) Survival Probability 

0.001069 0.1 

0.002086 0.2 

0.002819 0.3 

0.003445 0.4 

0.004031 0.5 

0.004616 0.6 

0.005243 0.7 

0.005976 0.8 

0.006992 0.9 

 

the interval [-2,2] in accordance with the transformation 

                                      3
6




 )min(
)min()max(

DD

DD

XX
XX

x .                         (3.1.1) 
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Table 3. 95% confidence intervals for the dosage level versus non-survival probability. Dosage is in cubic 
centimeters. Dashed endpoint entries “-“ indicate the calculation of a negative dosage level. In these 
cases, the actual endpoint is not defined by the probability model. 
 

Survival Probability Low Endpoint (cm
3
) High Endpoint (cm

3
) 

0.1 - 0.0062572 

0.2 - 0.0065969 

0.3 - 0.0069493 

0.4 - 0.0073238 

0.5 0.0003296 0.0077326 

0.6 0.0007384 0.0081954 

0.7 0.0011129 0.0087460 

0.8 0.0014653 0.0094490 

0.9 0.0018050 0.0105265 

 

This transformation helps control the magnitudes of the partial derivatives needed by 

the fitting algorithms. It also provides some ease in selecting starting values for   and 

 . As we hinted above, the response is the number of expired mice at the conclusion of 

the waiting period after the trial. To initiate our estimation procedure, we use the starting 

values 

                                                        12   ; ,                                              (3.1.2) 

in equation (2.3.1). The alternation numerical scheme converges quickly yielding the 

final values of 

                                           67608005544270 .;.   .                                (3.1.3). 

These values show excellent agreement with Garwood’s solution.9 Moreover, by using 

the transformations shown in (2.3.2) and (3.1.1), we find the dosage mean and standard 

deviation in cubic centimeters, i.e., 

                                   33 1031111210031154   .;.  .                          (3.1.4) 
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Table 4. Elements of the asymptotic variance-covariance matrix for example problem 1. Shown are the 
variances for the normal mean and variance along with the covariance for the normal mean and variance. 
Units are square cubic-centimeters. 
 

Var(µ) Cov(µ,σ2) Var(σ2) 

6.75 x 10-8 3.92 x 10-11 2.18 x 10-13 

 

Figure (1a) and (1b), respectively, contain plots of the probability density and cumulative 

distribution functions for this example. The 90% probability is indicated by “+” in Figure 

(1b). Table 2 contains a list of serum dosage values versus non-survival probabilities 

based upon our analysis of the experimental data. We have also estimated a 90% 

confidence interval for the mean as 

                                                   0078325000229710 .,. .                                      (3.1.5) 

To provide information on the sensitivity of the dosage estimates, 95% confidence 

intervals have been calculated for the dosage versus non-survival probability. These 

estimates are contained in Table 3. The normal distribution is a continuous function 

defined over the domain ),(  , so in terms of confidence intervals, it is possible to 

calculate negatively valued dosage endpoints. These endpoints are indicated by dashes 

in Table 3 since a negative dosage has no physical meaning. From the standpoint of 

statistics, these interval endpoints are undefined. To obtain the confidence intervals 

reflected in Tables 2 and 3, we have adapted equations (2.6.2.7), (2.6.2.8) and (2.6.3.9) 

for binary trials by setting n  equal to unity. The resulting intervals seem to concur well 

with the interval widths predicted by Langlie’s Monte Carlo simulations.16 In addition, the 

variances of the normal mean and variance are listed in Table 4 along with the 

covariance of these two parameters. 
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Table 5. Test series data for example 2. Binomial trials recorded for the number of brine shrimp surviving 
specified liquid solutions containing arsenic. Arsenic concentrations are in geometrical progression. 
 

Solution x Responses out of 8 

C -3 8 

D -2 8 

E -1 6 

F 0 5 

G 1 5 

H 2 1 

I 3 0 

 

 

3.2 Example 2 – Arsenic Toxicity 

 The second test problem examines the susceptibility of brine shrimp to arsenic in 

liquid solution. As the concentration of arsenic is increased, we expect fewer shrimp to 

survive. The data for this test series is provided in Table 5.9 In this case, a response is 

defined as a shrimp surviving immersion in the solution. Our starting guess for the 

estimation routine is given by (3.2.1), the same values as used in the preceding 

example problem. The converged values are 

                                        71283304341640 .;.   .                                (3.2.1) 

These values constitute an excellent match for the corresponding values in Garwood.9 

The associated normal mean and variance are calculated to be 

                                         40285216090690 .;.   .                                  (3.2.2) 

Since there are no actual values specified for the solution concentrations, these 

parameter estimates are dimensionless (the same as the dimensions of the explanatory 

variable x). Probability density and cumulative distribution functions are easily 

calculated for this example problem. These functions are shown in Figures 2a and 2b,  
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Figure 2. Probability density (2a) and cumulative distribution (2b) functions for example problem 2. The 
explanatory variable is dimensionless serum dosage.  

 

 

 
Table 6. Selected survival probabilities versus dimensionless serum dosage for example problem 2. 

 

x Survival Probability 

-1.18876 0.1 

-0.57160 0.2 

-0.12658 0.3 

0.25366 0.4 

0.60906 0.5 

0.96447 0.6 

1.34472 0.7 

1.78974 0.8 

2.40689 0.9 

 

Table 7. 95% confidence intervals for the arsenic concentration level versus survival probability. Arsenic 
concentration x  is dimensionless. Negative values of x are allowed. 
 

Survival Probability Low Endpoint High Endpoint 

0.1 -3.33209 1.96030 

0.2 -2.67947 2.16646 

0.3 -2.25114 2.38042 

0.4 -1.91821 2.60773 

0.5 -1.63775 2.85589 

0.6 -1.38959 3.13635 

0.7 -1.16228 3.46928 

0.8 -0.94832 3.89761 

0.9 -0.74216 4.55024 
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Table 8. Elements of the asymptotic variance-covariance matrix for example problem 2, the variances for 
the normal mean and variance along with the covariance for the normal mean and variance. Variance 
values are dimensionless. 
 

Var(µ) Cov(µ,σ2) Var(σ2) 

0.10008 0.00967 0.10238 

 

respectively.The point corresponding to a probability of 0.9 is indicated by a “+” sign on 

Figure 2b. Selected survival probabilities are listed versus the associated value of the 

explanatory variable x in Table 6. Also, the 90% confidence interval for the normal mean  

is calculated as 

                                                      ].,.[ 916552698411 .                                       (3.2.3) 

Since the explanatory variable has no real concentration units, we have allowed 

negative values for the lower interval endpoint. Table 7 contains the 95% confidence 

intervals in terms of x for a series of probabilities. Finally, Table 8 contains the contents 

of the information matrix (or asymptotic variance-covariance matrix). 
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4 SUMMARY 

 In this report, we have presented a discussion of sensitivity (or Go/No-Go) testing 

from basic principles. Our prototypical set of sensitivity experiments is based upon the 

Bruceton test procedure, or “Up and Down Method”, used to estimate the statistical 

mean associated with a distribution of successful or failed trials. For the “Probit” 

method, the mean and standard deviation are estimated by fitting data to a normal 

distribution. The behavior of the normal curve is then used to determine the probability 

of success associated with an explanatory variable of choice. 

 The set-up and execution of the Bruceton test procedure have been discussed 

for an example scenario. We have highlighted the importance of locating the mean and 

ensuring that extraneous data far removed from the mean is excluded from the analysis. 

Moreover, issues surrounding the efficiency of the data have been discussed. That is to 

say, we must obtain a sufficiently large sample in order for our analysis techniques and 

assumptions to apply. 

 Algorithms for data analysis have been discussed in detail, particularly the topic 

on Probit analysis. We have shown the set of equations required to fit go-no go data to 

the normal curve. This method has proven to be capable and readily addresses non-

uniformly separated binomial trials. Although our solution scheme is based upon 

Garwood’s method, we have presented an alternative to this method that can easily 

incorporate both binary and binomial trials. The alternate algorithm is stable and 

remains well-defined in every case. From the standpoint of sampling, we have 

discussed interval estimation for sensitivity tests. Algorithms have been suggested for 

the qualified estimation of probability confidence intervals as well as those for the mean 
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and variance. We have also derived equations that allow the variance and covariance to 

be estimated for the normal mean and variance produced by our fitting procedure. 

 Two classic test problems have been chosen from biological science to serve as 

practical examples. Both problems have been solved by coding developed directly from 

the algorithms presented in this report. In each case, our results have achieved 

excellent agreement with archival solutions. We have also produced additional data for 

these cases through the calculation of confidence intervals. We have also discussed 

shortfalls that exist within our process for estimating intervals and for estimating 

elements in the asymptotic variance-covariance matrix. 

 Sensitivity testing is very important, not only to the Department of Defense, but 

also to a variety of endeavors in the commercial sector, namely the pharmaceutical 

industry. The efficacies and effective dosages for medications are largely determined 

through this type of testing and analysis. In most cases, the statistical distributions 

produced by the analysis are used to make important management decisions. The 

investment in the development of a single medication can cost hundreds of millions of 

dollars. The cost of qualifying explosive systems is also high. For these reasons, it is 

important that we maintain a good understanding of the probabilistic theory that 

undergirds sensitivity testing and analysis. System reliability is of paramount importance 

for protecting both the investment of funding and human life. Failing to accurately 

estimate the reliability of a modern drug or engineering system can have grave 

consequences. 
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